
INTRODUCTION TO
CASSANDRA

Aaron Morton
@aaronmorton

www.thelastpickle.com

Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License

http://www.thelastpickle.com
http://www.thelastpickle.com
http://creativecommons.org/licenses/by-nc/3.0/nz/
http://creativecommons.org/licenses/by-nc/3.0/nz/

This is an introduction, not a
reference. Technical details have

been simplified or omitted.

Cassandra is a distributed, fault
tolerant, scalable, column

oriented data store.

The data model and on disk
storage are inspired by Google

Big Table.

The distributed cluster is inspired
by Amazon Dynamo.

First, a word about the column
oriented data model.

It’s different to a relational
database like MySql.

For now let’s say rows have a key
and each row can have different

columns.

Let’s store the ‘foo’ key in our
system.

‘foo’

Done. But we want to be able to
read it back if that one machine

fails.

Let’s distribute the value to 3 of
the 5 nodes we have.

This is the Replication Factor,
called RF or N.

We need to know which nodes
the key was written to. So we

know where to read it from later.

Each node has an Initial Token
that identifies the upper value of
the key range it is responsible for.

#1

<= ‘E’

#2

<= ‘J’
#5

<= ‘Z’

#4

<= ‘T’
#3

<= ‘O’

A Gossip protocol is used to
allow each node to know about

all other nodes in the cluster.
Including their initial token.

A client can connect to any node
in the cluster and ask it to store

the ‘foo’ key.

The Coordinator node for the
client will know which node is
responsible for the ‘foo’ key.

Our client connects to node 5
which knows that node 2 is

responsible for the key range that
contains ‘foo’.

#1

<= ‘E’

#2

<= ‘J’
#5

<= ‘Z’

#4

<= ‘T’
#3

<= ‘O’

client

If we have lots of keys between
‘F’ and ‘J’, node 2 may get

overloaded.

A Partitioner is used to transform
the key.

Transforming the keys can result
in two lexically close keys (e.g.
‘foo’ and ‘foo2’) are stored on

different nodes.

Transformed keys are also used
as the Initial Tokens for nodes.

The Random Partitioner applies a
MD5 transform to the key. The

range of possible keys is
transformed to a 128 bit integer.

There is also a Byte Order
Partitioner which orders keys
according to their byte values.

Start with the Random
Partitioner.

In this example all our keys are
transformed to an integer

between 0 and 9, and our ‘foo’
key transforms to 3.

Our client connects to node 5,
which transforms the key and

determines node 2 is responsible
for that range of keys.

#1

<= 2

#2

<= 4
#5

<= 0

#4

<= 8
#3

<= 6

client

But where are the 3 replicas?

A Replica Placement Strategy
determines which nodes should

contain replicas.

The Simple Strategy orders the
nodes by their initial token and
places the replicas clockwise

around the ring of nodes.

The Network Topology Strategy
can place the replicas in different
Data Centres and on different

Racks.

Start with the Simple Strategy.

Using the Replica Placement
Strategy our coordinator will

send the ‘foo’ key to 3 nodes in
parallel.

#1

#2

‘foo’
#5

#4

‘foo’
#3

‘foo’

client

When the 3 nodes tell the
coordinator they have

completed, it will tell the client
the write has completed.

What about fault tolerance?
What if node 4 is down?

#1

#2

‘foo’
#5

#4 #3

‘foo’

client

The Consistency Level (CL)
supplied by the client specifies

how many nodes must agree for
an operation to be successful.

For Reads this is number is
known as R.

For Writes it is known as W.

The common Consistency Levels
are One, Quorum and All.

Quorum is (N/2) +1.

If the operation succeeds it
means that the required

Consistency Level has been
achieved.

No matter what the Consistency
Level, the cluster will work to
Eventually make the on disk

data for all replicas Consistent.

To get consistent behaviour for all
operations ensure that

R + W > N

Using Quorum CL for Writes and
Reads will give consistent

operations.

Using All CL for Writes and One
for Reads will give consistent

operations.

Using One CL for Writes and All
for Reads will give consistent

operations.

If we use Quorum CL for our
write, the coordinator will wait

for 2 nodes to complete.

#1

#2

‘foo’
#5

#4 #3

‘foo’

client

If a node is offline the
coordinator will include a Hinted
Handoff when it sends the write

to one of the online nodes.

The Hinted Handoff tells a node
that it should forward the write
to the offline node if it comes

back online.

In our example node 5 gave node
2 a Hinted Handoff for node 4.

#1

#2

‘foo’
#5

#4

‘foo’
#3

‘foo’

client

What if the ‘foo’ key is read
before the Hinted Handoff is

delivered?

Or if node 4 died during the
write and the Hinted Handoff

was not sent?

#1

#2

‘foo’
#5

#4

‘’
#3

‘foo’

client

If using Quorum CL, the
coordinator asks all replicas to
perform the read and waits for

the Quorum of replicas to return.

If the results received do not
match a Read Repair process is
performed before returning to

the client.

Read Repair uses the time stamp
provided by the client during a
write to determine the latest

value.

The current value is pushed to
out of date nodes and

consistency is achieved before
the coordinator returns to the

client.

At lower Consistency Levels
Read Repair happens in the

background and can be assigned
a probability of running.

Hinted Handoff and Read Repair
are optimisations for achieving on

disk consistency.

The Anti Entrophy Service (AES)
is the main feature for achieving

consistency.

AES is normally run as a regular
weekly maintenance. Or after

node downtime.

AES detects differences by
generating hash trees (known as

Merkle Trees) that describe a
node’s content.

Ranges of out of sync data are
then exchanged between the

nodes.

How does it scale out?

Nodes can be added to a cluster
while it is online. Known as

Bootstrapping.

Adding nodes increases the disk
and memory available to the

cluster, and decreases the load
per node.

Adding nodes increases the disk
and memory available to the

cluster, and decreases the load
per node.

Apache Cassandra
http://cassandra.apache.org/

Google Big Table
http://labs.google.com/papers/bigtable.html

Amazon Dynamo
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

http://cassandra.apache.org/
http://cassandra.apache.org/
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

Aaron Morton
@aaronmorton

www.thelastpickle.com

Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License

http://www.thelastpickle.com
http://www.thelastpickle.com
http://creativecommons.org/licenses/by-nc/3.0/nz/
http://creativecommons.org/licenses/by-nc/3.0/nz/

